
7

07

Turn over ►

IB/M/Jun18/7516/2

Do not write
outside the

box

0 1 . 1

Ella writes a program on her home computer and compiles it into an executable file.

Ella’s executable file will not run on Josephine’s computer because the two computers
have different processors.

Explain why having different processors may have caused this problem.
[2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

8

08
IB/M/Jun18/7516/2

Do not write
outside the

box

6

The processor in Ella’s computer has four cores running at 2.8 GHz and the processor
in Josephine’s computer has one core running at 3.2 GHz.

0 1 . 2 Considering these differences, explain why Josephine’s computer might be able to
complete a particular task more quickly than Ella’s.

[2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

16

16
IB/M/Jun18/7516/2

Do not write
outside the

box 0 2 Table 3 – standard AQA assembly language instruction set. This should be used

to answer question part 0 2 . 1

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in register
n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value in
register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value specified

by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value in
register n and the value specified by <operand2> and store
the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and store
the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation between
the value in register n and the value specified by <operand2>
and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value specified
by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the number
of bits specified by <operand2> and store the result in register
d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the number
of bits specified by <operand2> and store the result in register
d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>
<operand2> can be interpreted in two different ways, depending on whether the first character is a
or an R:

• # – Use the decimal value specified after the #, eg #25 means use the decimal value 25.
• Rm – Use the value stored in register m, eg R6 means use the value stored in register 6.

The available general purpose registers that the programmer can use are numbered 0 to 12.

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

17

17

Turn over ►

IB/M/Jun18/7516/2

Do not write
outside the

box Figure 3 shows an incomplete assembly language program, intended to perform
integer division by 10.

The program decrements the value in R1 in steps of 10 until the value stored in R1 is
less than 10. Each time that the value in R1 is decreased by 10 the value in R3 is
increased by 1. For example, if R1 started at 43 the sequence of numbers stored in
R1 would be 43, 33, 23, 13, 3 and the final value in R3 would be 4.

0 2 . 1 Complete the program in Figure 3.

You should assume that R1 has already been assigned a value to divide.

You may not need to use all four lines for your solution and you should not write more
than one instruction per line.

 [4 marks]

Figure 3

MOV R3, #0

loopstart: CMP R1, #10

end: HALT

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

18

18
IB/M/Jun18/7516/2

Do not write
outside the

box

6

A processor supports 32 different basic machine code operations, and two addressing
modes represented by a single bit, as shown in Figure 4 below.

Figure 4

Opcode
Operand Basic machine

operation
Addressing

mode
0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1

0 2 . 2 How many different opcodes is the machine potentially capable of supporting?
[1 mark]

0 2 . 3 In direct addressing, the value stored in the operand is the address of the memory
location which contains the data to process.

In direct addressing mode, how many memory locations could a processor that used
the instruction format described in Figure 4 potentially make use of?

[1 mark]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

9

09

Turn over ►

IB/M/Jun19/7516/2

Do not write
outside the

box

4

0 3 When the processor writes data to the main memory it will make use of the address,
control and data buses.

Explain how each of these buses will be used during this write process.
 [4 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

14

14
IB/M/Jun19/7516/2

Do not write
outside the

box

Table 1 shows the standard AQA assembly language instruction set
that should be used to answer question part 0 4 . 1

Table 1 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character is a
or an R:

• # – Use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – Use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0 to 12

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

15

15

Turn over ►

IB/M/Jun19/7516/2

Do not write
outside the

box 0 4 Figure 2 shows an algorithm, written in pseudo-code, that is used to multiply two
variables W and X together. The resulting answer is stored in variable Y. It can be
assumed that both W and X are positive integers. Z is a temporary variable. The
operation DIV performs integer division.

Line numbers are included but are not part of the algorithm.

 Figure 2

 1 W  9
 2 X  12
 3 Y  0
 4 REPEAT
 5 Z  W LOGICAL BITWISE AND 1
 6 IF Z = 1 THEN
 7 Y  Y + X
 8 END IF
 9 W  W DIV 2
 10 X  X * 2
 11 UNTIL W = 0

0 4 . 1 Write a sequence of assembly language instructions that perform multiplication using
the same method shown in Figure 2.

Assume that registers 0, 1, 2 and 3 are used to store the values represented by
variables W, X, Y and Z accordingly.

Some lines, including those equivalent to line numbers 1 to 5 in Figure 2, have been
completed for you.

 [7 marks]

 MOV R0, #9
 MOV R1, #12
 MOV R2, #0

startloop: AND R3, R0, #1

jump:

 B startloop

endloop:

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

8

08
IB/G/Jun20/7516/2

Do not write
outside the

box 0 5 . 1 The memory buffer register and the program counter are examples of registers.

What is a register?
 [1 mark]

0 5 . 2 Describe the stored program concept.
 [2 marks]

0 5 . 3 Some buses in a computer system have to be bidirectional, meaning data or
instructions can travel both ways.

Explain why the data bus in a computer system must be bidirectional.
 [2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

9

09

Turn over ►

IB/G/Jun20/7516/2

Do not write
outside the

box 0 5 . 4 State two differences between how the Harvard and von Neumann architectures
operate.

 [2 marks]

Difference 1

Difference 2

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

10

10
IB/G/Jun20/7516/2

Do not write
outside the

box 0 5 . 5 Describe four steps that a processor goes through during the fetch stage of the
Fetch-Execute cycle.

You must explain the purpose of each step.
 [8 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

11

11

Turn over ►

IB/G/Jun20/7516/2

Do not write
outside the

box

15

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

12

12
IB/G/Jun20/7516/2

Do not write
outside the

box Table 1 shows the standard AQA assembly language instruction set that
should be used to answer question part 0 6 . 1

Table 1 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:
• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0–12

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

13

13

Turn over ►

IB/G/Jun20/7516/2

Do not write
outside the

box 0 6 . 1 Write an assembly language program to encrypt a single character using the Caesar
cipher. The character to be encrypted is represented using a character set consisting
of 26 characters with character codes 0–25. The output of the process should be the
character code of the encrypted character.

The assembly language instruction set that you should use to write the program is
listed in Table 1.

Table 2 shows the character codes and the characters they represent.

Table 2

Code Character Code Character Code Character
0 A 9 J 18 S
1 B 10 K 19 T
2 C 11 L 20 U
3 D 12 M 21 V
4 E 13 N 22 W
5 F 14 O 23 X
6 G 15 P 24 Y
7 H 16 Q 25 Z
8 I 17 R

• Memory location 100 contains the character code to be encrypted, which is in the
range 0–25

• Memory location 101 contains an integer key to be used for encryption, which is in
the range 0–25

• The program should store the character code of the encrypted character in memory
location 102

 [4 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

14

14
IB/G/Jun20/7516/2

Do not write
outside the

box

6

0 6 . 2 An instruction uses immediate addressing.

What is immediate addressing?
 [1 mark]

0 6 . 3 Another method of encryption is the Vernam cipher.

Explain why, under the correct conditions, the Vernam cipher is perfectly secure.
 [1 mark]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

13

13
Turn over ►

IB/G/Jun22/7516/2

Do not write
outside the

box 0 7 . 1

The fetch-execute cycle involves the Current Instruction Register (CIR), Control Unit,
Memory Address Register (MAR), Memory Buffer Register (MBR) and Program
Counter (PC).

Figure 6 lists four events that can take place during one cycle of the fetch-execute
cycle. The events are labelled A to D.

Some events that take place during the fetch-execute cycle are not listed.

Put these events in the order they would occur in the fetch-execute cycle when an
ADD instruction is executed.

Write the numbers 1 to 4 beside each description in Figure 6 to indicate the order in
which the events occur. The number 1 should be used to indicate the event that
would happen first.

[3 marks]

Figure 6

Description Order
(1 to 4)

A The contents of the MBR are copied to the CIR.

B The contents of the PC are copied to the MAR.

C The Control Unit decodes the contents of the CIR.

D The result of the calculation is stored.

0 7 . 2 Describe the role of main memory in the execution of computer programs.
 [2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

14

14
IB/G/Jun22/7516/2

Do not write
outside the

box 0 7 . 3 State the name of the processor component that is responsible for performing
mathematical operations such as addition and multiplication.

 [1 mark]

0 7 . 4 Explain why increasing the data bus width can lead to improvements in
processor performance.

 [1 mark]

0 7 . 5 Identify the bus that would need to be changed and state the change needed so that
the maximum amount of memory addressable by the processor would be doubled.

 [2 marks]

Bus to change

Change needed

9

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

16

16
IB/G/Jun22/7516/2

Do not write
outside the

box Table 1 shows the standard AQA assembly language instruction set that
should be used to answer question 0 8 . 1 and question 0 8 . 2

Table 1 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>
<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:
• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0–12

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

17

17
Turn over ►

IB/G/Jun22/7516/2

Do not write
outside the

box 0 8 . 1 Shade one lozenge to show which of the assembly instructions in Figure 7 uses
immediate addressing.

[1 mark]
Figure 7

Instruction Immediate
Addressing

A LDR R3, 42

B MOV R3, #42

C STR R3, 101

D SUB R3, R2, R1

0 8 . 2 A computer program is required that will multiply the value stored in X by 2 if it is less
than 50 and leave it unchanged if it is 50 or more.

The algorithm for this task can be written in pseudocode as:

IF X < 50 THEN
 X  X * 2
ENDIF

Write an assembly language program using the AQA assembly language instruction
set shown in Table 1 to carry out this task.

At the start, the value of X is stored in memory location 101
[4 marks]

5

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

16

16
IB/G/Jun23/7516/2

Do not write
outside the

box 0 9 . 1 Explain the role of the status register in a processor and describe a circumstance that
would result in its contents being updated.

[2 marks]

5

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

18

18
IB/G/Jun23/7516/2

Do not write
outside the

box
Table 2 shows the standard AQA assembly language instruction set that

should be used to answer question 1 0

Table 2 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>
<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:
• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0–12

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

19

19
Turn over ►

IB/G/Jun23/7516/2

Do not write
outside the

box 1 0 Figure 4 shows an algorithm written in pseudo-code. It is used to calculate the value
of the contents of variable A multiplied by the contents of variable B.

Line numbers are included in the pseudo-code but are not part of the algorithm.

Figure 4

1 A  4
2 B  3
3 C  0
4 WHILE B > 0
5 C  C + A
6 B  B – 1
7 ENDWHILE

Write a sequence of assembly language instructions that would perform the same
function as the pseudo-code in Figure 4.

Registers R1, R2 and R3 are used to hold the values of A, B and C respectively. The
assembly language code equivalent to line numbers 1 to 3 in Figure 4 have been
completed for you.

[4 marks]

MOV R1, #4

MOV R2, #3

MOV R3, #0

4

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

20

20
IB/G/Jun23/7516/2

Do not write
outside the

box 1 1 A company is redesigning the processor used in a smartwatch it sells. The redesign
will allow the company to increase the clock speed of the processor.

The processor executes all software and controls all hardware on the smartwatch.
The smartwatch uses a wide range of sensors to continuously collect data about its
wearer and environment. To improve accuracy each sensor takes many readings
every second and sends them to the processor for averaging. The smartwatch has
different software applications to play music, display images and provide a summary
of all the sensor data it has stored.

Customer feedback shows that the smartwatch provides all customers with reliable
and accurate data. However, some customers mentioned that performance can
worsen when loading a large image and listening to music at the same time.

Describe two features of the situation that suggest increasing the clock speed would
improve the performance of the smartwatch.

[2 marks]

2

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

13

13

Turn over ►

IB/G/Jun24/7516/2

Do not write
outside the

box 1 2 . 1 Figure 5 shows some of the processor registers and buses that are used during the
fetch stage of the fetch-execute cycle, together with the main memory.

Figure 5

State the name of the components that are labelled in Figure 5 with the numbers
1 to 4. In the case of register names, the full names must be stated.

 [2 marks]

1

2

3

4

1 2 . 2 Describe the stored program concept.
 [2 marks]

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

14

14
IB/G/Jun24/7516/2

Do not write
outside the

box 1 2 . 3 In a particular processor instruction set, each instruction consists of an opcode and an
operand. An operand could be an immediate value to be used by a program.

State two other types of value that can be stored in an operand.
 [2 marks]

1 2 . 4 Computer A and Computer B both have a processor with a clock speed of 2.8 GHz
but Computer A performs tasks much faster than Computer B. Computer A has a
larger cache and greater word length than Computer B.

Explain why the larger cache and greater word length are possible factors for the
performance difference between Computer A and Computer B.

 [2 marks]

Larger cache

Greater word length

8

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

16

16
IB/G/Jun24/7516/2

Do not write
outside the

box Table 1 shows the standard AQA assembly language instruction set that
should be used to answer question 1 3

Table 1 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in

the program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the number
of bits specified by <operand2> and store the result in
register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>
<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:
1. # – use the decimal value specified after the #, eg #25 means use the decimal value 25
2. Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0–12

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

17

17

Turn over ►

IB/G/Jun24/7516/2

Do not write
outside the

box 1 3 Registers R1 and R3 each store a different positive number.

Write a program using the standard AQA assembly language in Table 1 that will:

• store the greater of these two numbers in R1
• store 1 in R2 if the value originally in R1 is greater than the value in R3,

storing 3 in R2 otherwise.
[4 marks]

4

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

